Perchlorate Treatment by Enhanced Coagulation, Oxidation, and Membranes Sun Liang, Ph.D., Karen Scott, Leslie Palencia, and Jeanne-Marie Bruno The Metropolitan Water District of Southern California #### **Objectives** - Investigate enhanced coagulation for ClO₄- removal - Investigate ClO₄⁻ removal in ozone/PEROXONE/GAC systems - Evaluate the effectiveness of membranes for ClO₄ reduction # **Enhanced Coagulation Study Objectives** - Investigate the feasibility of enhanced coagulation for CIO₄- removal - Evaluate the effects of pH on enhanced coagulation for ClO₄⁻ removal # **Experimental Design for Enhanced Coagulation** - Conventional treatment processes - Chemical Dosages - 40 mg/L of Alum, 3 mg/L of polymer, 0.01 mg/L of filter aid - 25 mg/L of FeCl₃, 3 mg/L of polymer - PHs at ambient and 6.5 #### Results from Enhanced Coagulation | Coagulant/
Dose
(mg/L) | Filter
Aid
(mg/L) | Site | pH
(unit) | CLO ₄ (μ g/L) | |------------------------------|-------------------------|----------|--------------|--------------------------| | FeCI ₃ /25 | 0 | PI
FE | 8.28
7.24 | 6 | | FeCl ₃ /25 | 0 | PI | 8.27 | 7 | | | | FE
PI | 7.05
8.26 | 6
7 | | Alum/40 | 0.01 | FE | 7.33 | 6 | | Alum/40 | 0.01 | PI
FE | 8.21
6.65 | 7
7 | All tests with 3 mg/L of polyDADMAC polymer #### **Oxidation Study Objectives** - Determine optimum applied ozone and/or hydrogen peroxide doses for ClO₄⁻ removal - Identify the effects of various ClO₄⁻ levels on ClO₄⁻ removal - Evaluate oxidation followed by GAC adsorption for ClO₄⁻ removal ### **Experimental Design for Oxidation** - Pilot plant flow of 3 gpm CRW through ozone contactor columns - Applied ozone doses of 2, 3, and 4 mg/L without H₂O₂ and at 1:0.5 and 1:1 O₃:H₂O₂ ratios - Spiked ClO₄ at 10, 20, and 90 μg/L - Tested ClO₄⁻ removal at ambient, 6.5, and 9.3 pH Oxidation at Various pHs (Dose = $90 \mu g/L ClO4$) # **Experimental Design for Oxidation/GAC** - Ozone contactor effluent treated in GAC mini column (82 mL/min) - 2 conditions @ 90 mg/L ClO₄ dose - 2 mg/L Ozone - 3 mg/L Ozone: 1.5 mg/L H₂O₂ #### Membrane Study Objectives - Compare CIO₄⁻ removal using nanofiltration (NF) and reverse osmosis (RO) membranes - Evaluate the effect of ClO₄⁻ feed concentration on ClO₄⁻ rejection rates - Evaluate the effect of recycling the retentate #### **Experimental Design for Membranes** - Spiral Wound Membranes - Film Tech N70 4040-B (NF) - Fluid Systems TFC 4820-ULPT (RO) - Post treatment - Spiked ClO₄ Dosages: - Low: 20-50 μg/L - Medium: 500-800 μg/L - High: 1,000-2,000 μg/L #### **Experimental Design (Cont'd)** - Brine recycle at 50% of influent flow - Test duration 3 hours - Sampled 2nd and 3rd hour at influent, influent with recycle, permeate, and brine - Measured ClO₄⁻, total organic carbon (TOC), conductivity, UV₂₅₄ absorbing organics, turbidity, and particle counts #### **Membrane Characteristics** | Туре | MWCO | Surface
Charge | Compo-
sition | Surface
area
(ft ²) | Flux
(GFD) | Recovery
(%) | |------|--------|--------------------|------------------------|---------------------------------------|---------------|-----------------| | NF | 300 Da | Negative
Charge | Thin Film
Composite | 82 | 15 | 20 | | RO | | Negative
Charge | Thin Film
Composite | 72 | 15 | 20 | **MWCO - molecular weight cutoff** ### **Membrane Influent Water Quality** | Source Water | CRW | |----------------------|---------------------------------| | Total Organic Carbon | 2.40 - 3.05 mg/L | | UVA ₂₅₄ | 0.024 - 0.032 abs/cm | | Conductivity | 969 - 1030 _μ mhos/cm | | Temperature | 20.4 - 21.5°C | | рН | 8.09 - 8.24 | | Turbidity | 0.12 - 0.78 NTU | | Particle Count | 113 - 1590 /mL | ### **Specific Flux for Membranes** | Membrane | Average
Pressure
(psi) | Average
Permeate
(gpm) | Average
Flux
(GFD) | Specific
Flux
(GFD/psi) | |----------|------------------------------|------------------------------|--------------------------|-------------------------------| | NF | 87 | 0.86 | 15 | 0.17 | | RO | 106 | 0.76 | 15 | 0.14 | #### **Brine Characteristics** - Perchlorate, TOC, conductivity, UV₂₅₄ absorbing organics were concentrated in the brine - Membrane systems concentrated ClO₄⁻ in brine by approximately 20-50 percent #### **Membrane Study Results** - NF and RO membranes can effectively remove ClO₄⁻ from CRW - NF and RO performed equally well for ClO₄⁻ removal at low levels of ClO₄⁻ and lowered ClO₄⁻ concentration below 4 μg/L in permeate - RO performed better than NF for ClO₄removal at medium and high levels of perchlorate ### Membrane Study Results (Cont'd) - Brine recycle did not significantly affect ClO₄⁻ percent rejection, but produced higher ClO₄⁻ levels in permeate - Conductivity increased in permeate when brine recycled - Brine disposal/treatment is required #### **Conclusions** - Enhanced coagulation does not appear promising in the treatment of ClO₄⁻ in CRW - Oxidation does not appear promsing in treating low levels of ClO₄⁻ (10-20 μg/L); at higher levels (90 μg/L), some ClO₄⁻ removal may be expected, however results are mixed #### Conclusions (Cont'd) - Oxidation followed by GAC did not reduce ClO₄- levels - NF and RO membranes consistently removed greater than 80 percent of the applied ClO₄⁻